Nanoscale MOSFETS: Physics, Simulation and Design

By Zhibin Ren

Purdue University, West Lafayette, IN



Published on


This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2)development of a new TCAD (technology computer aided design) tool for quantum level device simulation, 3) examination and assessment of new features of carrier transport in nano-scale transistors, and 4) exploration of device design issues near the ultimate scaling limit with the help of the developed tools. We concentrate on the technical issues by investigating a double-gate structure, which has been widely accepted as the ideal device structure for ultimate CMOS scaling. We focus on quantum effects and non-equilibrium, near-ballistic transport in extremely scaled transistors (in contrast to quasi-equilibrium, scattering-dominant transport in long channel devices), where a non-equilibrium Green's function formalism (NEGF) has been used to deal with the quantum transport problem.


Zhibin Ren received his PhD from Purdue University in October 2001.

Cite this work

Researchers should cite this work as follows:

  • Zhibin Ren (2013), "Nanoscale MOSFETS: Physics, Simulation and Design,"

    BibTex | EndNote



Purdue University, West Lafayette, IN